If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+3=12
We move all terms to the left:
11x^2+3-(12)=0
We add all the numbers together, and all the variables
11x^2-9=0
a = 11; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·11·(-9)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*11}=\frac{0-6\sqrt{11}}{22} =-\frac{6\sqrt{11}}{22} =-\frac{3\sqrt{11}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*11}=\frac{0+6\sqrt{11}}{22} =\frac{6\sqrt{11}}{22} =\frac{3\sqrt{11}}{11} $
| t+2.8=4.9 | | 2x+5+2x+5+4x+-7=180 | | 20+7x=-15 | | |5x|-5=10 | | -1+2x-x=2x+5 | | 3(3x+1)+3=33 | | 5v-2-5v-13=7v-4v | | 6(j+3)=96 | | 3c^2+4c+8=−6c | | -5+3u=7 | | -9z-1=-10z | | 2=(8/3)n | | 1-6n+3=-7n-3 | | 4)32n−83=−29/12 | | X^2-9x+132=0 | | 32n−83=−2912 | | x+66°=180°-66°= | | 9y−(7y−18)=28 | | 159=9d+6 | | 9+7b+7=-b-8 | | 0.5(6h-4)=5h+1 | | n+7=-2n+13 | | 1=m+9/3 | | 9+7b+7=–b−8 | | -4(-2+x)=19-3(x+3) | | 1n+7=1n-4n | | 2=8/3n | | 3(3-3x)=2x+3-30 | | (-8)+s=8 | | -4(2n-3)=12-7n | | -1+m=6 | | -1(2x-4)-1(4x-6)+3=-5(x-1)-1(4x+4)+3 |